21 research outputs found

    Model making a conscious decision by the bank to participate in money laundering

    No full text
    На мікрорівні (тобто на рівні окремого суб’єкта господарювання) легалізація коштів, отриманих злочинним шляхом, є джерелом прибутків і ризиків окремих суб’єктів. Саме тому під час дослідження процесів легалізації кримінальних доходів на макрорівні розглядається функція максимізації корисності особи, залученої до даного процесу. Згідно з традиційною теорією, власник фінансових активів розміщує їх відповідно до очікуваного прибутку та відповідних ризиків. У випадку особи, що легалізує кошти, отримані злочинним шляхом, очікуваний прибуток порівнюється з конфіденційністю (а саме з тим, що інформація про таку особу буде надана правоохоронним і податковим органам) як окремим фактором, а також імовірністю та суворістю застосування санкцій

    Immunofluorescence analysis of Rad51 foci in Pol β proficient and deficient cells after MMS treatment

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "The accumulation of MMS-induced single strand breaks in G phase is recombinogenic in DNA polymerase β defective mammalian cells"</p><p>Nucleic Acids Research 2005;33(1):280-288.</p><p>Published online 12 Jan 2005</p><p>PMCID:PMC546155.</p><p>© 2005, the authors © </p> Wild-type and Pol β cells were treated with 0.5 mM MMS for 15 min and then allowed to repair for the indicated periods of time. The spatial distribution of Rad51 foci is shown in representative nuclei of wild-type () and Pol β () cells under high magnification. The histogram () reports the percentage of Rad51 foci. Cells with at least 10 foci were counted as Rad51 positive cells

    Immunofluorescence analysis of chromatin-bound PCNA in Pol β proficient and deficient cells after MMS treatment

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "The accumulation of MMS-induced single strand breaks in G phase is recombinogenic in DNA polymerase β defective mammalian cells"</p><p>Nucleic Acids Research 2005;33(1):280-288.</p><p>Published online 12 Jan 2005</p><p>PMCID:PMC546155.</p><p>© 2005, the authors © </p> Wild-type and Pol β cells, synchronized at G phase, were treated with 0.5 mM MMS for 15 min and then allowed to repair for the indicated periods of time. Cells were fixed in cold methanol and then in cold acetone to extract the soluble PCNA fraction. The spatial distribution of PCNA foci is shown in representative nuclei of wild-type () and Pol β () cells under high magnification. The histogram () reports the percentage of PCNA foci. Cells with at least 5 foci were counted as PCNA positive cells

    Immunofluorescence analysis of γH2AX foci in Pol β proficient and deficient cells after MMS treatment

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "The accumulation of MMS-induced single strand breaks in G phase is recombinogenic in DNA polymerase β defective mammalian cells"</p><p>Nucleic Acids Research 2005;33(1):280-288.</p><p>Published online 12 Jan 2005</p><p>PMCID:PMC546155.</p><p>© 2005, the authors © </p> Wild-type and Pol β cells were treated with MMS and γH2AX foci analysis was performed. The spatial distribution of γH2AX foci is shown in representative nuclei of wild-type () and Pol β () cells under high magnification. The histogram () reports the percentage of γH2AX foci after cell treatment with 0.5 mM MMS for 15 min and different repair times as indicated. The histogram () reports the percentage of γH2AX foci after cell treatment with increasing MMS doses as indicated. Cells with at least 10 foci were counted as γH2AX positive cells

    Effect of the lack of Pol β on MMS-induced DNA SSB repair during S phase

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "The accumulation of MMS-induced single strand breaks in G phase is recombinogenic in DNA polymerase β defective mammalian cells"</p><p>Nucleic Acids Research 2005;33(1):280-288.</p><p>Published online 12 Jan 2005</p><p>PMCID:PMC546155.</p><p>© 2005, the authors © </p> Comet assay was performed in wild-type and Pol β cells, synchronized in S phase, after 15 min treatment with 0.5 mM MMS followed by 1 h repair in complete medium. The TM of 50 comets per experimental point was measured by computerized image analysis and the comets were classified in different classes (TM1–4) according to TM values. () Heterogeneity in DNA repair in S phase untreated cells () in S phase MMS treated cells and () in S phase cells after repair

    The αDG (613–651) peptide modulation of MMP-2 catalysis.

    No full text
    <p>Dependence on the α-DG(613–651) peptide concentration of <i>k</i><sub><i>cat</i></sub> (<u><i>panel A</i></u>), <i>K</i><sub><i>m</i></sub> (<u><i>panel B</i></u>) and <i>k</i><sub><i>cat</i></sub><i>/K</i><sub><i>m</i></sub> (<u><i>panel C</i></u>) for the enzymatic processing of the fluorogenic peptide by whole MMP-2 (o) and by cdMMP-2 (x) at pH 7.3 and 37°C, as obtained by the analysis of data reported in Figs <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0192651#pone.0192651.g004" target="_blank">4</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0192651#pone.0192651.g005" target="_blank">5</a>. Continuous lines have been obtained by applying Eqs (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0192651#pone.0192651.e002" target="_blank">2</a>) and (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0192651#pone.0192651.e003" target="_blank">3</a>), employing parameters reported in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0192651#pone.0192651.t001" target="_blank">Table 1</a>. Arrows indicate the value of the parameter in the absence of the α-DG(613–651) peptide, which is represented as “o” for the intact MMP-2 and as “x” for cdMMP-2.</p

    The effect of αDG (613–651) peptide on the catalytic parameters for the MMP-2 proteolysis.

    No full text
    <p>Lineweaver-Burk plot of the enzymatic activity of 60 nM MMP-2 at 37°C at pH 7.3 as a function of the fluorogenic substrate concentration at different concentrations of α-DG(613–651) peptide, namely (<u><i>panel A</i></u>) 0 (o), 23 nM (x), 125 nM (*), 200 nM (Δ) and 0.4,μM (25CA), and (<u><i>panel B</i></u>) 0.4 μM (o), 1 μM (x), 2 μM (*) and 4 μM (◊). Continuous lines have been obtained by applying Eqs. (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0192651#pone.0192651.e001" target="_blank">1</a>)–(<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0192651#pone.0192651.e003" target="_blank">3</a>), employing parameters reported in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0192651#pone.0192651.t002" target="_blank">Table 2</a>. (<u><i>Panel C</i></u>): namely 0 (o), 23 nM (x), 60 nM (*) and 0.2 μM (◊), and, (<u><i>panel D</i></u>) 0.2 μM (o), 0.6 μM (x) and 2 μM (*) and, (<u><i>panel D</i></u>) 0.2 μM (o), 0.6 μM (x) and 2 μM (*). Continuous lines have been obtained by applying Eqs. (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0192651#pone.0192651.e001" target="_blank">1</a>)–(<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0192651#pone.0192651.e003" target="_blank">3</a>), employing parameters reported in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0192651#pone.0192651.t002" target="_blank">Table 2</a>. Dashed line corresponds to the Lineweaver-Burk plot of the enzymatic activity of whole MMP-2 in the absence. Dashed-dotted lines corresponds to the Lineweaver-Burk plot in the presence of the α-DG(613–651) peptide 0.2 μM and 2 μM α-DG(613–651) peptide in <i>panel C</i> and <i>panel D</i>, respectively. Where not shown, standard deviation is smaller than symbol.</p

    Thermodynamic and kinetic scheme for the effect of the αDG(613–651) peptide on the catalytic processing of the fluorogenic peptide.

    No full text
    <p>Where, pept represents the αDG(613–651) peptide, <sup><i>0</i></sup><i>k</i><sub><i>cat</i></sub> and <sup><i>0</i></sup><i>K</i><sub><i>m</i></sub> are the observed catalytic parameters in the absence of the peptide, <i>K</i><sub><i>a</i></sub> and <i>K</i><sub><i>b</i></sub> are the peptide dissociation constants to the free enzyme for the two binding sites, <i>α</i> and <i>β</i> are the interaction parameters.</p

    LC-MS/MS analysis of the (613–651) peptide incubated with MMP-2.

    No full text
    <p>Chromatographic profiles of the (613–651) peptide incubated for 5 hours without (<b>A</b>) or with (<b>B</b>) MMP-2. MS/MS spectra of the (636–651) peptide eluting at RT 18.9 min (<b>C</b>) and (619–629) peptide eluting at RT 23.4 min (<b>D</b>). Matched b and y ions are colored in red and blue, respectively, while precursor ions loosing H<sub>2</sub>O or NH<sub>3</sub> are indicated in green.</p

    Comparison between the amino acid sequence of <i>murine</i> (<i>upper panel</i>) and <i>human</i> (<i>lower panel</i>) DG (according to Swiss-Prot database).

    No full text
    <p>Amino acid sequences for signal peptides are in gray, for α-DG in bold, and for α-DG in brown. Amino acid sequence of murine α-DG(483–628) are in bold green (<i>upper panel</i>) while the corresponding sequence of human α-DG(485–630) is in bold blue. The amino acid sequence of the peptide derived from the C-terminal portion of human α-DG (in the highlighted red rectangle), contains the sequence (613–630) that overlaps with the corresponding mouse α-DG sequence (611–628), except for amino acids in light blue in the red rectangle in lower panel.</p
    corecore